

03. Find the value of k if the function

$$f(x) = \frac{\sin 9x}{2x} ; x \neq 0$$
$$= k ; x = 0 \quad \text{is continuous at } x = 0$$

SOLUTION

Step 1

 $\lim_{x \to 0} f(x)$

- $= \lim_{x \to 0} \frac{\sin 9x}{2x}$
- $= \lim_{x \to 0} \frac{9}{2} \frac{\sin 9x}{9x}$ $= \frac{9}{2} (1)$
- = <u>9</u>2

Step 2 :

f(0) = k given

Step 3 :

Since f is continuous at x = 0

 $f(0) = \lim_{x \to 0} f(x)$

```
k = 9/2
```

04. Write negations of the following statements

1. $\forall x \in N$, $x^2 + x$ is an even number

Negation : $\exists x \in N$, such that $x^2 + x$ is not an even number

2. if triangles are congruent then their areas are equal

Using :	\sim (P \rightarrow Q) =	P ^ ~ Q
---------	------------------------------	---------

Negation : triangles are congruent and their areas are not equal

05. find elasticity of demand if the marginal revenue is Rs 50 and the price is Rs 75 SOLUTION

Rm	=	$R_A \left(\begin{array}{c} 1 & - \\ & \eta \end{array} \right)$			
50	=	75 $\begin{pmatrix} 1 - \underline{1} \\ \eta \end{pmatrix}$			
<u>50</u> 75	=	1 - <u>1</u> η			
23	=	1 - <u>1</u> η			
<u>1</u> η	=	$1 - \frac{2}{3}$			
<u>1</u> η	= .	<u>1</u> 3	η	=	3

- **06.** State which of the following sentences are statements . In case of statement , write down the truth value
 - a) Every quadratic equation has only real roots

ans : the given sentence is a logical statement . Truth value : F

b) $\sqrt{-4}$ is a rational number

ans : the given sentence is a logical statement . Truth value : F

07. Evaluate :
$$\int \frac{\sec x \cdot \tan x}{\sec^2 x + 4} dx$$
SOLUTION PUT sec x = t

Secx.tanx.dx = dt

THE SUM IS

$$= \int \frac{1}{t^2 + 4} dt$$

$$= \int \frac{1}{t^2 + 2^2} dt$$

- $= \frac{1}{a} \tan^{-1} \frac{t}{a} + c$
- = $\frac{1}{2}$ $\tan^{-1}\frac{1}{2}$ + c

Resubs.

 $= \frac{1}{2} \tan^{-1}\left(\frac{\sec x}{2}\right) + c$

98. if
$$A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$
; $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ then find $|AB|$
SOLUTION
 $AB = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$
 $= \begin{pmatrix} 1 + 3 & 2 + 4 \\ 2 + 6 & 4 + 8 \end{pmatrix}$
 $= \begin{pmatrix} 4 & 6 \\ 8 & 12 \end{pmatrix}$
 $|AB| = 4(12) - 8(6) = 48 - 48 = 0$
32. (A)Attempt any TWO of the following
01. $f(x) = \frac{3 - \sqrt{2x + 7}}{x - 1}$; $x \neq 1$
 $= -1/3$; $x = 1$ Discuss continuity at $x = 1$
SOLUTION
31. $f(x) = \frac{3 - \sqrt{2x + 7}}{x - 1}$; $x \neq 1$
 $= -1/3$; $x = 1$ Discuss continuity at $x = 1$
SOLUTION
31. $f(x) = \frac{3 - \sqrt{2x + 7}}{x - 1}$; $x \neq 1$
 $= \lim_{x \to 1} \frac{3 - \sqrt{2x + 7}}{x - 1}$
 $= \lim_{x \to 1} \frac{3 - \sqrt{2x + 7}}{x - 1}$
 $= \lim_{x \to 1} \frac{3 - \sqrt{2x + 7}}{x - 1}$
 $= \lim_{x \to 1} \frac{3 - \sqrt{2x + 7}}{x - 1}$
 $= \lim_{x \to 1} \frac{9 - (2x + 7)}{x - 1}$
 $= \lim_{x \to 1} \frac{9 - (2x - 7)}{x - 1}$
 $= \lim_{x \to 1} \frac{2 - 2x}{x - 1}$
 $= \lim_{x \to 1} \frac{2 - 2x}{x - 1}$
 $= \lim_{x \to 1} \frac{2(1 - x)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(1 - x)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \lim_{x \to 1} \frac{2(x - 1)}{x - 1}$
 $= \frac{-2}{3 + \sqrt{2x + 7}}$

(

(06)

(B) Attempt any TWO of the following

(08)

$$\frac{x^2}{25} + \frac{y^2}{36} = 1$$

about Y – axis

SOLUTION

STEP 2 :

$$\frac{x^{2}}{25} + \frac{y^{2}}{36} = 1$$

$$\frac{x^{2}}{25} = 1 - \frac{y^{2}}{36}$$

$$\frac{x^{2}}{25} = \frac{36 - y^{2}}{36}$$

$$x^{2} = \frac{25}{36}(36 - y^{2})$$

STEP 3 :

$$V = \pi \int_{-6}^{6} x^{2} dy$$
About y - axis

$$= \pi \int_{-6}^{6} \frac{25}{36} (36 - y^{2}) dy$$

$$= \frac{25\pi}{36} \int_{-6}^{6} (36 - y^{2}) dy$$

$$e = \frac{25\pi}{36} \left[\frac{36\pi}{9} - \frac{216}{3} \right]_{-6}^{-6}$$

$$= \frac{25\pi}{36} \left\{ \left[216 - \frac{216}{3} \right]_{-6}^{-5} - \left[-216 + \frac{218}{3} \right]_{-6}^{-5} \right]_{-6}^{-5}$$

$$= \frac{25\pi}{36} \left\{ \left[216 - 72 \right]_{-5}^{-5} - \left[-216 + 72 \right]_{-5}^{-5} \right]_{-5}^{-5}$$

$$= \frac{25\pi}{36} \left[144 + 144 \right]_{-5}^{-5}$$

$$= \frac{25\pi}{36} \left[288 \right]_{-5}^{-5}$$

$$= 200 \pi \quad \text{cubic units}$$
02. Evolucion:
$$\int \log |1 + x^{2}| \, dx$$

$$= \int \log |1 + x^{2}| \, dx$$

$$= \log (1 + x^{2}) \int 1 \, dx - \int \left[\frac{d}{dx} \log |1 + x^{2}| \int 1 \, dx \right] \, dx$$

$$= \log (1 + x^{2}) \int 1 \, dx - \int \frac{2x}{1 + x^{2}} \, dx$$

$$= x \cdot \log |1 + x^{2}| - 2 \int \frac{x^{2}}{1 + x^{2}} \, dx$$

$$= x \cdot \log |1 + x^{2}| - 2 \int \frac{1 + x^{2} - 1}{1 + x^{2}} \, dx$$

$$= x \cdot \log |1 + x^{2}| - 2 \int 1 - \frac{1}{1 + x^{2}} \, dx$$

$$= x \cdot \log |1 + x^{2}| - 2 \int (1 - \frac{1}{1 + x^{2}}) \, dx$$

03. Find how many lanterns (x) should be ordered so that the order is the most economical if the price for lantern is given as

$$p = 4x + \frac{64}{x^2} + \frac{7}{x}$$

SOLUTION

STEP 1: COST

$$C = p.x$$

$$= \left(4x + \frac{64}{x^2} + \frac{7}{x}\right) \cdot x$$

$$= 4x^2 + \frac{64}{x} + 7$$

STEP 2 :

$$\frac{dC}{dx} = 8x - 64 = 8x - 64x^{-2}$$
$$\frac{d^2C}{dx^2} = 8 + 128x^{-3}$$
$$= 8 + \frac{128}{x^3}.$$

STEP 3 :

$$\frac{dC}{dx} = 0$$

$$8x - \frac{64}{x^2} = 0$$

$$8x = \frac{64}{x^2}$$

$$8x^3 = 64$$

$$x^3 = 8 \quad \therefore x = 2$$

STEP 4 :

$$\frac{d^2C}{dx^2} \begin{vmatrix} z & z & z^3 \end{vmatrix} = 2 + \frac{128}{2^3} > 0$$

Cost is minimum at x = 2

No of lanterns to be ordered = 2

Q3. (A)Attempt any TWO of the following

$$p \land ((\land p \lor q) \lor \land q) \equiv p$$

Solution $p \land ((\sim p \lor q) \lor \sim q)$ = $p \land (\sim p \lor (q \lor \sim q))$= $p \land (\sim p \lor t)$= $p \land t$= $p \land t$Identity Law

02.
$$f(x) = \frac{(e^{3x} - 1)^2}{x \cdot \log(1 + 3x)}$$
; $x \neq 0$
= 10; $x = 0$ Discuss the continuity at $x = 0$

Solution :

Step 1

 $\lim_{x \to 0} f(x)$

$$= \lim_{x \to 0} \frac{(e^{3x} - 1)^2}{x \cdot \log(1 + 3x)}$$

Dividing Numerator & Denominator by x^2 $x \rightarrow 0$, $x \neq 0$, $x^2 \neq 0$

= Lim

$$x \rightarrow 0$$

$$\frac{\frac{(e^{3x} - 1)^2}{x^2}}{\frac{x \cdot \log(1 + 3x)}{x^2}}$$

= Lim

$$x \rightarrow 0$$
 $\frac{\left(\frac{e^{3x}-1}{x}\right)^2}{\frac{\log(1+3x)}{x}}$

$$= \lim_{\substack{x \to 0 \\ x \to 0}} \frac{\left(3 \frac{e^{3x} - 1}{3x}\right)^2}{\log(1 + 3x)}$$

(06)

$$= \lim_{x \to 0} \frac{\begin{pmatrix} 3 & e^{3x} - 1 \\ 3x \end{pmatrix}^2}{\log \begin{pmatrix} 1 \\ 3x \end{pmatrix}^3}$$
$$= \frac{(3 \log e)^2}{\log e^3}$$
$$= \frac{9}{3 \log e} = 3$$
Step 2 :

f(0) = 10 given

Step 3 :

$$f(0) \neq \lim_{x \to 0} f(x)$$

 $\therefore f$ is discontinuous at x = 0

Step 4 :

Removable Discontinuity

f can be made continuous at x = 0 by redefining it as

$$f(x) = \frac{(e^{3x} - 1)^2}{x \cdot \log(1 + 3x)} ; x \neq 0$$
$$= 3 ; x = 0$$

if sin y = x.sin(5 + y)	;	prove that	dy = s	$sin^{2}(5 + y)$
				dx	sina
SOLUTION					
	sin y	=	x.sin(5 + y)		
	х	=	sin y sin (5 + y)		
	Differ	ent	iating wrt y		
	dx dy	=	sin (5 + y)	<u>d</u> sin y dy	$y = \sin y \underline{d} \sin (5 + y)$ $\frac{dy}{dy}$
				sin-(-(5 + y)
	dx dy	-	sin (5 + y) .	cos y	$- \sin y \cdot \cos (5 + y) \frac{d}{dy} (5 + y)$
				sin	n²(5 + y)
	dx dy	-	sin (5 + y).c	os y – sin ² (5	- cos (5 + y) . sin y 5 + y)
	dx dy	=	$\frac{\sin (5 + y - y)}{\sin^2(5 + y)}$	<u>Y)</u>	
	dx dy	=	sin 5 sin ² (5 + y)		
Now	dy dx	=	l dx dy		
÷.	dy dx	=	sin ² (5+ y) sin 5		

03.

if

$$\mathbf{01.} \qquad \int_{4}^{7} \frac{(11-x)^2}{x^2 + (11-x)^2} dx \qquad \dots \qquad (1)$$

$$u_{SING} \int_{0}^{b} f(x) dx = \int_{b}^{b} f(\alpha + b - x) dx$$

$$I = \int_{4}^{7} \frac{(11-(4+7-x))^2}{(4+7-x)^2 + (11-(4+7-x))^2} dx$$

$$I = \int_{4}^{7} \frac{(11-(11-x))^2 dx}{(11-x)^2 + (11-(11-x))^2}$$

$$I = \int_{4}^{7} \frac{(11-x)^2 + (11-11+x)^2}{(11-x)^2 + (x^2} dx \qquad \dots \qquad (2)$$

$$(1) + (2)$$

$$2I = \int_{4}^{7} \frac{(11-x)^2 + x^2}{(11-x)^2 + x^2} dx$$

$$2I = \int_{4}^{7} \frac{1}{1} dx$$

$$2I = \int_{4}^{7} 1 dx$$

$$2I = (x) \int_{4}^{7}$$

$$2I = 3$$

$$I = 3/2$$

(08)

$$\begin{array}{l} \textbf{02.} \qquad \int \frac{x^2}{x^4 + 5x^2 + 6} & dx \\ \qquad \qquad \int \frac{x^2}{(x^2 + 2)(x^2 + 3)} & dx \\ \textbf{SOUTION} \\ & \frac{x^2}{(x^2 + 2)(x^2 + 3)} & = \frac{A}{x^2 + 2} & \pm \frac{B}{x^2 + 3} \\ & \frac{x^2 = t}{(x^2 + 2)(x^2 + 3)} & = \frac{A}{x^2 + 2} & \pm \frac{B}{x^2 + 3} \\ & \frac{x^2 = t}{(t + 2)(t + 3)} & = \frac{A}{t + 2} & \pm \frac{B}{t + 3} \\ & \frac{t}{t} & = A(t + 3) + B(t + 2) \\ \textbf{Put } \textbf{t} = -3 \\ & -3 & = B(-3 + 2) \\ & -3 & = B(-1) & \therefore B = 3 \\ \textbf{Put } \textbf{t} = -2 \\ & -2 & = A(-2 + 3) \\ & -2 & = A(1) & \therefore A = -2 \\ \hline \textbf{THEREFORE} \\ & \frac{1}{(t + 2)(t + 3)} & = \frac{-2}{t + 2} & \pm \frac{3}{t + 3} \\ \hline \textbf{HENCE} \\ & \frac{x^2}{(x^2 + 2)(x^2 + 3)} & = \frac{2}{x^2 + 2} & \pm \frac{3}{x^2 + 3} \\ \hline \textbf{BACK IN THE SUM} \\ & = \int \frac{-2}{x^2 + 2} + \frac{3}{x^2 + 3} & dx \\ & = \int \frac{-2}{x^2 + \sqrt{2}} + \frac{3}{x^2 + 3} & dx \\ & = \int \frac{-2}{x^2 + \sqrt{2}} + \frac{3}{x^2 + \sqrt{3}} & dx \\ & = \int \frac{-2}{\sqrt{2}} \tan^{-1}\left[\frac{x}{\sqrt{2}}\right] + 3 & \frac{1}{\sqrt{3}}\tan^{-1}\left[\frac{x}{\sqrt{3}}\right] + c \\ & = -\sqrt{2} \tan^{-1}\left[\frac{x}{\sqrt{2}}\right] & + \sqrt{3} \tan^{-1}\left[\frac{x}{\sqrt{3}}\right] + c \end{array}$$

A = $\begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$ Verify : A.(adj A) = (adj A).A = |A|.I 03. COFACTOR'S $A_{11} = (-1)^{1+1} \begin{vmatrix} 0 & -2 \\ 0 & 3 \end{vmatrix} = 1(0-0) = 0$ A12 = $(-1)^{1+2}$ $\begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix}$ = -1(9+2) = -11 $A_{13} = (-1)^{1+3} \begin{vmatrix} 3 & 0 \\ 1 & 0 \end{vmatrix} = 1(0-0) = 0$ $A_{21} = (-1)^{2+1} \begin{vmatrix} -1 & 2 \\ 0 & 3 \end{vmatrix} = -1(-3 - 0) = 3$ $A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1(3-2) = 1$ $A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} = -1(0+1) = -1$ $A_{31} = (-1)^{3+1} \begin{vmatrix} -1 & 2 \\ 0 & -2 \end{vmatrix} = 1(2-0) = 2$ $A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 2 \\ 3 & -2 \end{vmatrix} = -1(-2-6) = 8$ $A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} = 1(0+3) = 3$ COFACTOR MATRIX OF A

ADJ A = TRANSPOSE OF THE COFACTOR MATRIX $= \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix}$ | **A** | = 1(0+0) + 1(9+2) + 2(0-0)= 11 LHS 1 = A.(adj A) $= \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix}$ $= \begin{pmatrix} 0+11+0 & 3-1-2 & 2-8+6 \\ 0-0-0 & 9+0+2 & 6+0-6 \\ 0-0+0 & 3+0-3 & 2+0+9 \end{pmatrix}$ $= \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$ LHS 2 = (adj A). A $= \begin{pmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{pmatrix}$ $= \begin{pmatrix} 0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0-0+0 & 0+2+9 \end{pmatrix}$ $= \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$ RHS = |A|.I $11 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{pmatrix}$ HENCE A.(adj A) = (adj A).A = |A|.I

Q4. (A)Attempt any six of the following

SECTION - II

01. Find correlation coefficient between x and y for the following data

n = 100, $\overline{x} = 62$, $\overline{y} = 53$, $\sigma x = 10$, $\sigma y = 12$, $\Sigma(x - \overline{x})(y - \overline{y}) = 8000$ SOLUTION $r = \frac{\cos(x,y)}{\sigma x \cdot \sigma y}$ $= \frac{\sum(x - \overline{x})(y - \overline{y})}{\sigma x \cdot \sigma y}$ $= \frac{\frac{8000}{100}}{10.12}$ $= \frac{80}{10.12}$

 $= \frac{2}{3}$

02. a car is insured for 80% of its value . An accident took place and the car was damaged to the extent of 40% of its value . How much can be claimed under the policy if the annual premium at 75 paise percent amounts to ₹ 360 . Also state the value of the car

SOLUTION

Value of car = ₹ x Insured value = $\frac{80x}{100}$ = $\frac{4x}{5}$ Rate of premium = 77 paise percent = 0.75% Premium = ₹ 360 360 = $\frac{0.75}{100}$ x $\frac{4x}{5}$ 360 = $\frac{75}{10000}$ x $\frac{4x}{5}$ 360 = $\frac{6x}{1000}$ x = 60,000 value of car = ₹ 60,000 (12)

Loss	=	<u>40</u> x 60,000 100
	=	₹ 24,000
Claim	=	80% of loss
	=	80 × 24,000
	=	₹ 19,200

03. The coefficient of rank correlation for a certain group of data is 0.5. If $\Sigma d^2 = 42$, assuming no ranks are repeated; find the no. of pairs of observation

SOLUTION

 $R = 0.5 ; \Sigma d^{2} = 42$ $R = 1 - \frac{6\Sigma d^{2}}{n(n^{2} - 1)}$ $0.5 = 1 - \frac{6(42)}{n(n^{2} - 1)}$ $\frac{6(42)}{n(n^{2} - 1)} = 1 - 0.5$ $\frac{6(42)}{n(n^{2} - 1)} = 0.5$ $\frac{6(42)}{n(n^{2} - 1)} = \frac{1}{2}$ $n(n^{2} - 1) = 6 \times 42 \times 2$ $n(n^{2} - 1) = 3 \times 2 \times 3 \times 2 \times 7 \times 2$ $(n - 1).n.(n + 1) = 7 \times 8 \times 9$ On comparing , n = 8

04. Ameena started a business by investing certain capital. After 3 months she admitted Yasmin as a partner who invested the same amount. Finding the need for more capital they invited Shabana into the partnership after 4 months with same capital as they had. At the end of the year profit was ₹ 23,400. How much was the share of each in the profit.

SOLUTION

STEP 1 : Profits will be shared in the ratio of 'PERIOD OF INVESTMENT'

STEP 2 :

PROFIT = ₹ 23,400

900 Ameena's share of profit= <u>12</u> x 23,400 = ₹ 10,800 26

900 Yasmin's share of profit = <u>9</u> x 23,400 = ₹ 8,100 <u>-26</u>

900 Shabana's share of profit= <u>5 x</u> 23,400 = ₹ 4,500 -26

05. Calculate CDR for district A and B and compare

Age	DISTRIC	CT A	DISTRIC	СТ В
Group	NO. OF	NO. OF	NO. OF	NO. OF
(Years)	PERSONS	DEATHS	PERSONS	DEATHS
	Р	D	Р	D
0 - 10	1000	18	3000	70
10 - 55	3000	32	7000	50
Above 55	2000	41	1000	24
	$\Sigma P = 6000$	ΣD = 91	ΣP = 11000	ΣD = 144
CDR(A	$A) = \frac{\Sigma D}{\Sigma P} x$	CDR(B) =	<u>Σ D</u> x 1000 Σ P	
	$= \frac{91 x}{6000}$	=	<u>144</u> x 1000 11000	
	= 15.17	=	13.09	
	(DEATHS PER THOU	(DE	ATHS PER THOUSAN	

COMMENT : CDR(B) < CDR(A) . HENCE DISTRICT B IS HEALTHIER THAN DISTRICT A

06. the probability of defective bolts in a workshop is 40%. Find the mean and variance of defective bolts out os 10 bolts

```
SOLUTION n = 10,

r,v,x = no of defective bolts

p = probability of defective bolt = 40 = 2

100 5

q = 1-p = 3

5

X ~ B(10,2/5)

Mean = np = 10 x 2 = 5

5

Variance = npq = 10 x 2 x 3 = 2.4
```

07. The ratio of prices of two cycles was 16:23. Two years later when the price of first cycle has increased by 10% and that of second by ₹ 477; the ratio of prices becomes 11:20. Find the original prices of two cycles

SOLUTION

Let price of cycle 1 = 16x Price of cycle 2 = 23x

As per the given condition

16x + <u>10</u> (16x)							
100	=	11					
23x + 477		20					
16x + 8x 5	= .	<u>11</u> (23x + 20	- 47	7)			
<u> 88x </u>	= .	<u>11</u> (23x + 20	47	7)			
32x	=	23x + 477	7				
9x	=	477			х	=	53
price of cycle 1	=	16(53)	=	₹	848		
price of cycle 2	=	23(53)	=	₹	121	9	

08. for an immediate annuity paid for 3 years with interest compounded at 10% p.a. its present value is ₹ 10,000. What is the accumulated value after 3 years (1.1³ = 1.331)

SOLUTION	A	$= P(1 + i)^{n}$
	=	$10000(1 + 0.1)^3$
	=	10000(1.1) ³
	=	10000(1.331)
	=	₹ 13,310

Q5. (A)Attempt any two of the tollowing (04)
01. The probability that a student from an evening college will be a graduate is 0.4. Determine the probability that out of 5 students
(i) one will be graduate (ii) at least one will be graduate
solution
S students ... n = 5
For a trial Success - student is a graduate

$$p = probability of success = 4/10 = 2/5$$

 $q = probability of failure = 3/5$
r.v. X - no of successes = 0.1.2.....5 X ~ B (5.2/5)
a) P(one will be graduate)
 $= P(X = 1)$
 $= P(1)$
 $= S(1 + 0)$, a^4
 $= \frac{5}{C1} \left(\frac{2}{5}\right)^1 \left(\frac{3}{5}\right)^4$
 $= 5.2.81$
 3125
 $= 162$
 625
b) P(ot least one will be graduate)
 $= P(X = 1)$
 $= 1 - P(0)$
 $= 1 - \frac{5}{C0} \left(\frac{2}{5}\right)^0 \left(\frac{3}{5}\right)^5$
 $= 1 - \frac{1.1.243}{3125}$
 $= \frac{3125 - 243}{3125}$
 $= 2882$
 3125

02. Compute rank correlation coefficient for the following data

Rx :	1	2	3	4	5	6
Ry :	6	3	2	1	4	5

SOLUTION

х	У	d = x - y	d ²	$R = 1 - \frac{\delta \Sigma}{m m^2}$
1	6	5	25	n(n-
2	3	1	1	= 1 - <u>6(</u> 36
3	2	1	1	= 1 - <u>38</u>
4	1	3	9	35
5	4	1	1	= -3 35
6	5	1	1	= -0.086
			$\Sigma d^2 = 38$	

03. the income of the agent remains unchanged though the rate of commission is increased from 6% to 7.5%. Find the percentage reduction in the value of the business

SOLUTION

Let initial sales	=	₹ 100
Rate of commission	=	6%
Commission	=	□ 6
Let the new sales	=	₹x
Rate of commission	=	7.5%
Commission	=	7.5x 100

Since the income of the broker remains unchanged

$$\frac{7.5 \text{ x}}{100} = 6$$

$$x = \frac{6 \times 1000}{75}$$

$$x = 80$$

$$\therefore \text{ new sales} = ₹$$

Hence percentage reduction in the value of the business = 20%

80

(B) Attempt any Two of the following

01. the value of godown of ₹ 40,000 contains stock worth ₹ 2,40,000. They were insured for ₹ 25,000 and 80% of the stock respectively. Due to fire, stock worth ₹ 30,000 was completely destroyed while remaining was reduced to 60% of its value. The damage to the godown was ₹ 20,000. What sum can be claimed under the policy

SOLUTION

GODOWN		
Property value	=	₹ 40,000
Insured value	=	₹ 25,000
Loss	=	₹ 20,000
Claim	=	insured val. x loss Property val.
	=	25,000 × 20,000

40,000

= ₹ 12,500

STOCK IN GODOWN

Value of stock	=	₹ 2,40,000
Insured value	=	80% of the stock
Loss		

stock worth ₹ 30,000 was completely destroyed while remaining was reduced to 60% of its value

- = 30,000 + 40 (2,40,000 30,000)
- = 30,000 + <u>40</u> (2,10,000) 100
- = 30,000 + 84,000

= ₹ 1,14,000

Since 80% of the stock was insured

Claim	= 80% of loss	80% of loss		
	$= \frac{80}{100} \times 1,14,000$			
	= ₹ 91,200			
Hence Total claim	= 12, 500 + 91,200	=	₹	1,03,700

Arithmetic means of X and Y series are 6 and 8 respectively. Calculate correlation coefficient **SOLUTION :**

40 = 35 + b b = 5

$$y = \frac{\Sigma y}{n}$$
 8 = $\frac{9 + 11 + b + 8 + 7}{5}$

xy
$$x-\overline{x}$$
 $y-\overline{y}$ $(x-\overline{x})^2$ $(y-\overline{y})^2$ $(x-\overline{x})(y-\overline{y})$ 6901010211-43169-121054-3169-1248-20400872-141-23040004020-26 \overline{x} $\overline{x}y$ $\overline{\Sigma}(x-\overline{x})$ $\overline{\Sigma}(y-\overline{y})$ $\overline{\Sigma}(y-\overline{y})^2$ $\overline{\Sigma}(x-\overline{x})(y-\overline{y})$

$$r = \frac{\Sigma (x - \overline{x}) . (y - \overline{y})}{\sqrt{\Sigma (x - \overline{x})^2} \sqrt{\Sigma (y - \overline{y})^2}}$$

$$r = \frac{-26}{\sqrt{40 \times \sqrt{20}}}$$
$$r = \frac{-26}{\sqrt{40 \times 20}}$$

$$r' = \frac{26}{\sqrt{40 \times 20}}$$

taking log on both sides

 $\log r' = \log 26 - \frac{1}{2} \left[\log 40 + \log 20 \right]$ $\log r' = 1.4150 - \frac{1}{2} \left[1.6021 + 1.3010 \right]$ $\log r' = 1.4150 - \frac{1}{2} (2.9031)$ $\log r' = 1.4150 - 1.4516$ $\log r' = \overline{1.9634}$ $r' = AL(\overline{1.9634}) = 0.9191$ r = -0.9191 **03.** A bill of □ 21,900 drawn on July 10 for 6 months was discounted for ₹ 21,720 at 5% p.a. On which day the bill was discounted

SOLUTION

due 6 months @ 5% p.a.
d days
10 th July ? ← 13 th Jan
₹ 21,720 ₹ 21,900
STEP 1:
Date of drawing = $10/07$
Add period of bill + 6 months
Nominal due date = 10/01
Add Grace days + 3 days
Legal due date = 13/01 13 th January
STEP 2:
Let Unexpired period = d days
STEP 3 ·
B.D. = F.V C.V.
= 21 900 - 21 720
= ₹ 180
STEP 4 :
B.D. = Interest on F.V. for 'd' days @ 5% p.a.
3
180 = <u>21900 x d x <u>-5</u></u>
- 365 100 72
d = 60
STEP 5:
Dt. of Discount
= 13 th Jan - 60 days
Jan Dec Nov
= 13 + 31 + 16
= 14 th November

Q6. (A) Attempt any Two of the following

- (06)
- **01.**100 misprints are distributed randomly throughout the 100 pages of a book . Assuming the distribution of the number of misprints to be Poisson , find the probability that a page at random will contain at least three misprints $(e^{-1} = 0.368)$

SOLUTION

m = average number of misprints per page = 100/100 = 1r.v X ~ P(1)

P(a page at random will contain at least three misprints)

$$= P(x \ge 3)$$

$$= 1 - \left(P(0) + P(1) + P(2) \right)$$

$$= 1 - \left(\frac{e^{-1} \cdot 1^{0}}{0!} + \frac{e^{-1} \cdot 1^{1}}{1!} + \frac{e^{-1} \cdot 1^{2}}{2!} \right) \quad \text{Using} \quad P(x) = \frac{e^{-m} \cdot m^{x}}{x!}$$

$$= 1 - e^{-1} \cdot \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{2} \right)$$

$$= 1 - 0.368(1 + 1 + 0.5)$$

$$= 1 - 0.368(2.5)$$

- = 1 0.92
- = 0.08

02. Suppose X is a random variable with pdf

$$f(x) = \frac{c}{x} \quad ; \quad 1 < x < 3 \; ; \quad c > 0$$
Find $c \& E(X)$

$$i) \qquad \int_{1}^{3} \frac{c}{x} \qquad dx = 1$$

$$c \int_{1}^{3} \frac{1}{x} \qquad dx = 1$$

$$c \left(\log x\right)_{1}^{3} = 1$$

$$c \left(\log 3 - \log 1\right) = 1$$

$$c \left(\log 3 = 1\right)$$

$$c = \frac{1}{\log 3}$$
Hence X is a r.v. with pdf

$$f(x) = \frac{1}{x \log 3}$$
; $1 < x < 3$

ii)
$$E(x) = \int_{1}^{3} x f(x) dx$$

$$= \int_{1}^{3} x \frac{1}{x \log 3} dx$$

$$= \int_{1}^{3} \frac{1}{\log 3} dx$$

$$= \left(\frac{x}{\log 3}\right)^{3}$$

$$= \left(\frac{3}{\log 3}\right) - \left(\frac{1}{\log 3}\right) =$$

 $\frac{2}{\log 3}$

03. In a factory there are six jobs to be performed, each of which should go through machines A and B in the order A - B. Determine the sequence for performing the jobs that would minimize the total elapsed time T . Find T and the idle time on the two machines Job J2 Jl JЗ J4 J5 J6 3 3 8 5 6 MA 1 5 6 3 2 2 10 Μв Step 1 : Finding the optimal sequence Min time = 1 on job J1 on machine M1. Place the job at the start of the sequence J1 Next min time= 2 on jobs J4 & J5 on machine MB. Place the jobs at the end of the sequence randomly Jı J4 J5 **Placed Randomly** Next min time = 3 on jobs $J_2 \& J_6$ on machine M_A and on job J_3 on machine Μв respectively. Place J2 & J6 at the start next to J1 randomly and J3 at the end next to J4 J1 JЗ J4 J 5 J2 J۵ **Placed Randomly OPTIMAL SEQUENCE** J1 J2 J۵ Jз J4 J 5 Step 2 : Work table According to the optimal sequence Job J1 J2 J۵ J3 J4 J5 total process time 3 3 Ma 1 8 5 6 26 hrs = 10 3 2 2 28 hrs Μв 5 6 = WORK TABLE Page 27 of 32

		MAG	CHINES	
	N	A	M	В
JOBS	IN	OUT	IN	OUT
Jl	0	1	1	6
J ₂	1	4	6	12
٦٩	4	7	12	22
13	7	15	22	25
L	15	20	25	07
J 4	15	20	2.5	27
J5	20	26	27	29

Step 3 :

Total elapsed time T = 29 hrs

Idle time on MA = T - $\left(sum of processing time of all 6 jobs on M1 \right)$ = 29 - 26 = 3 hrs Idle time on MB = T - $\left(sum of processing time of all 6 jobs on M2 \right)$

dle time on M_B = T $- \left[sum of processing time of all 6 jobs on M2 \right]$ = 29 - 28 = 1 hr

Step 4 : All possible optimal sequences :

$$J_{1} - J_{2} - J_{6} - J_{3} - J_{4} - J_{5}$$

$$OR$$

$$J_{1} - J_{6} - J_{2} - J_{3} - J_{4} - J_{5}$$

$$OR$$

$$J_{1} - J_{2} - J_{6} - J_{3} - J_{5} - J_{4}$$

$$OR$$

$$J_{1} - J_{6} - J_{2} - J_{3} - J_{5} - J_{4}$$

01. a pharmaceutical company has four branches, one at each city A, B, C and D. A branch manager is to be appointed one at each city, out of four candidates P, Q, R and S. The monthly business depends upon the city and effectiveness of the branch manager in that city

			CI	ITY		
		А	В	С	D	_
	Р	11	11	9	9	
BRANCH	Q	13	16	11	10	MONTHLY BUSINESS (IN LACS)
MANAGER	R	12	17	13	8	
	S	16	14	16	12	

Which manager should be appointed at which city so as to get maximum total monthly business .

6	6	8	8	Subtracting all the elements in the matrix from
4	1	6	7	its maximum
5	0	4	9	The matrix can now be solved for 'MINIMUM'
1	3	1	5	
0	0	2	2	Reducing the matrix using 'ROW MINIMUM'
3	0	5	6	
5	0	4	9	
0	2	0	4	
0	0	2	0	Reducing the matrix using 'COLUMN MINIMUM'
3	0	5	4	
5	0	4	7	
0	2	0	2	
0	×	2	X	 Allocation using 'single zero row-column method'
3	0	5	4	 Allocation incomplete (3rd row unassigned)
5	×	4	7	
×	2	0	2	
	:			
0		2	×	 Drawing min. no. of lines to cover all '0's
√ 3	0	5	4	
√ 5	×	4	7	
	2	0	2	
	\checkmark			

between the number of people entering the store on a given day (X) and sales (in thousands of \Box) (Y). The records of ten days is given $\Sigma x = 580$; $\Sigma y = 370$; $\Sigma x^2 = 41658$; $\Sigma y^2 = 17206$; $\Sigma xy = 11494$ Obtain regression line X on Y

solution

$$\overline{x} = \sum_{n} = \frac{580}{10} = 58 ; \overline{y} = \sum_{n} = \frac{370}{10} = 37$$

$$bxy = \frac{n\sum_{n} y - \sum_{n} \sum_{y} y}{n\sum_{y} y^{2} - (\sum_{y})^{2}}$$

$$= \frac{10(11494) - (580)(370)}{10(17206) - (370)^{2}}$$

$$= \frac{114940 - 214600}{172060 - 136900}$$

$$= -\frac{99660}{35160}$$

$$= -\frac{9966}{3516}$$

$$= -2.835$$
Equation

$$x - \overline{x} = bxy (y - \overline{y})$$

$$x - 58 = -2.835 (y - 37)$$

$$x - 58 = -2.835 y + 104.895$$

$$x = -2.835 y + 104.895 + 58$$

x = -2.835 y + 162.895

03.	Minimize z	= 30x + 20y , subject t	0	STEP 2 Y – axis	SCALE : 1 CM = 1 UNIT
$x + y \le 8$, $6x + 4y \ge 12$, $5x + 8y$			$\geq~20$, $~x$, y $\geq~0$	•	
	STEP 1			A(0,8)	
	x + y ≤ 8	x + y = 8 cuts x – axis at (8,0) cuts y – axis at (0,8)	Put (0,0) in x + y ≤ 8 0 ≤ 8 SS : ORIGIN SIDE	7	COMMON SOLUTION SET BOUNDED REGION AS SHOWN IN THE GRAPH
	6x + 4y ≥ 12	6x + 4y = 12 cuts x – axis at (2,0) cuts y – axis at (0,3)	Put (0,0) in $6x + 4y \ge 12$ $0 \ge 12$ (NOT SATISFIED) SS : NON-ORIGIN SIDE	B(0,3) B(0,3) C(4/7 15/7	
	5x + 8y ≥ 20	5x + 8y = 20 cuts x - axis at (4,0) cuts y - axis at (0,2.5)	Put (0,0) in 5x + 8y ≥ 20 0 ≥ 20 (NOT SATISFIED) SS : NON-ORIGIN SIDE		D(4,0) 4 5 6 7 8 9 $x - axis$
	x , y ≥ 0		SS : I QUADRANT	6x + 4y = 12 <u>STEP 3 :</u>	2 5x + 8y = 20 x + y = 8
	FOR C 2 x	$6x + 4y = 12 \dots $ $5x + 8y = 20 \dots $ 12x + 8y = 24 5x + 8y = 20	. (1) . (2)	CORNERS $Z = A(0,2)$ $Z = B(0,3)$ $Z = C(A(7,15/7), 7, -7)$	30x + 20y 30(0) + 20(8) = 160 30(0) + 20(3) = 60 120 + 200 = 420 = 400
		7x = 4		C (4/7,13/7) Z =	$\frac{120}{7} + \frac{300}{7} = \frac{420}{7} = 80$
	auba	x = 4/7		D(4.0) Z =	30(4) + 20(0) = 120
	2002	v = 15/7		E(0,0) Z -	30(6) + 20(0) - 240
	C ≡	(⁴ / ₇ , ¹⁵ / ₇)		<u>STEP 4</u> Zmin = 60 at all y	points on seg BC (INFINITE OPTIMAL SOLUTIONS)