Q1. (A)Attempt any six of the following

1. Find X and Y if $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right] ; X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$

SOLUTION

$$
\begin{array}{rlrl}
X+Y=\left(\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right) & X+Y=\left(\begin{array}{ll}
7 & 0 \\
2 & 5
\end{array}\right) \\
X-Y=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) & X-Y=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right) \\
2 X=\left(\begin{array}{ll}
10 & 0 \\
2 & 8
\end{array}\right) & 2 Y=\left(\begin{array}{ll}
4 & 0 \\
2 & 2
\end{array}\right) \\
X & =\frac{1}{2}\left(\begin{array}{ll}
10 & 0 \\
2 & 8
\end{array}\right) & Y=\frac{1}{2}\left(\begin{array}{ll}
4 & 0 \\
2 & 2
\end{array}\right) \\
X & =\left(\begin{array}{ll}
5 & 0 \\
1 & 4
\end{array}\right) & Y & =\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)
\end{array}
$$

2. find $\frac{d y}{d x}$ if $y=\sin ^{-1} \sqrt{1-x^{2}}$

SOLUTION

$$
\begin{aligned}
& \text { Put } x=\cos \theta \\
& y=\sin ^{-1} \sqrt{1-\cos ^{2} \theta} \\
& y=\sin ^{-1} \sqrt{\sin ^{2} \theta} \\
& y=\sin ^{-1}(\sin \theta) \\
& y=\theta \\
& y=\cos ^{-1} x \\
& \frac{d y}{d x}=\frac{-1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

3. Find the value of k if the function

$$
\begin{aligned}
f(x) & =\frac{\sin 9 x}{2 x} \quad ; x \neq 0 \\
& =k
\end{aligned} \quad ; x=0 \quad \text { is continuous at } x=0
$$

SOLUTION

Step 1

$\operatorname{Lim} f(x)$
$x \rightarrow 0$
$=\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 9 x}{2 x}$
$=\lim _{x \rightarrow 0} \frac{9}{2} \frac{\sin 9 x}{9 x}$
$=\quad \frac{9}{2}(1)$
$=\quad \frac{9}{2}$

Step 2 :
$f(0)=k$ \qquad given

Step 3 :

Since f is continuous at $x=0$
$f(0)=\operatorname{Lim}_{f(x)}$
$\mathrm{k}=9 / 2$
04. Write negations of the following statements

1. $\forall x \in N, x^{2}+x$ is an even number

Negation: $\exists x \in N$, such that $x^{2}+x$ is not an even number
2. if triangles are congruent then their areas are equal

Using $\quad: \quad \sim(P \rightarrow Q) \equiv P \wedge \sim Q$
Negation : triangles are congruent and their areas are not equal
05. find elasticity of demand if the marginal revenue is Rs 50 and the price is Rs 75
solution

$$
\begin{aligned}
R m & =R_{A}\left(1-\frac{1}{\eta}\right) \\
50 & =75\left(1-\frac{1}{\eta}\right) \\
\frac{50}{75} & =1-\frac{1}{\eta} \\
\frac{2}{3} & =1-\frac{1}{\eta} \\
\frac{1}{\eta} & =1-\frac{2}{3} \\
\frac{1}{\eta} & =\frac{1}{3}
\end{aligned}
$$

$$
\eta=3
$$

6. State which of the following sentences are statements. In case of statement, write down the truth value
a) Every quadratic equation has only real roots ans: the given sentence is a logical statement. Truth value: F
b) $\sqrt{ }-4$ is a rational number ans: the given sentence is a logical statement. Truth value: F
7. Evaluate: $\int \frac{\sec x \cdot \tan x}{\sec ^{2} x+4} d x$

SOLUTION PUT $\sec x=\dagger$

$$
\sec x \cdot \tan x . d x=d t
$$

the sum is
$=\int \frac{1}{t^{2}+4} d$
$=\int \frac{1}{t^{2}+2^{2}} d t$
$=\frac{1}{a} \tan ^{-1} \frac{t}{a}+c$
$=\frac{1}{2} \tan ^{-1} \frac{t}{2}+c$
Resubs.
$=\frac{1}{2} \tan ^{-1}\left(\frac{\sec x}{2}\right)+c$
08. if $A=\left(\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right) ; \quad B=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ then find $|A B|$

SOLUTION

$$
\begin{aligned}
& A B \\
& =\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \\
& =\left[\begin{array}{ll}
1+3 & 2+4 \\
2+6 & 4+8
\end{array}\right] \\
& =\left[\begin{array}{rr}
4 & 6 \\
8 & 12
\end{array}\right] \\
& |A B|=4(12)-8(6)=48-48=0
\end{aligned}
$$

Q2. (A)Attempt any TWO of the following

1. $f(x)=\frac{3-\sqrt{2 x+7}}{x-1} ; x \neq 1$
$=-1 / 3 \quad ; \quad x=1 \quad$ Discuss continuity at $x=1$
SOLUTION

STEP 1

$$
\begin{aligned}
& \operatorname{Lim} f(x) \\
& x \rightarrow 1 \\
& =\operatorname{Lim}_{x \rightarrow 1} \frac{3-\sqrt{2 x+7}}{x-1} \\
& =\operatorname{Lim}_{x \rightarrow 1} \frac{3-\sqrt{2 x+7}}{x-1} \frac{3+\sqrt{2 x+7}}{3+\sqrt{2 x+7}} \\
& =\lim _{x \rightarrow 1} \frac{9-(2 x+7)}{x-1} \frac{1}{3+\sqrt{2 x+7}} \\
& =\operatorname{Lim}_{x \rightarrow 1} \frac{9-2 x-7}{x-1} \frac{1}{3+\sqrt{2 x+7}} \\
& =\lim _{x \rightarrow 1} \frac{2-2 x}{x-1} \quad \frac{1}{3+\sqrt{2 x+7}} \\
& =\lim _{x \rightarrow 1} \frac{2(1-x)}{x-1} \quad \frac{1}{3+\sqrt{2 x+7}} \\
& =\lim _{x \rightarrow 1} \frac{-2(x-1)}{x-1} \frac{1}{3+\sqrt{2 x+7}} \quad x-1 \neq 0 \\
& =\quad \frac{-2}{3+\sqrt{2+7}}
\end{aligned}
$$

$$
\begin{array}{ll}
= & \frac{-2}{3+3} \\
= & \frac{-1}{3}
\end{array}
$$

STEP 2 :
$f(1)=-1 / 3$ \qquad given

STEP 3 :

```
\(f(1)=\operatorname{Lim} f(x) \quad ; f\) is continuous at \(x=1\)
    \(x \rightarrow 1\)
```

2. Write the converse, inverse and the contrapositive of the statement
"The crops will be destroyed if there is a flood"
SOLUTION:
LET $\quad \mathbf{P} \rightarrow \mathbf{Q} \equiv$ if there is a flood then the crops will be destroyed

CONVERSE $: ~ Q \rightarrow P$
If the crops will be destroyed then there will be a flood

CONTRAPOSITIVE: ~ $\mathbf{Q} \rightarrow \sim \mathbf{P}$
If the crops will not be destroyed then there will be no flood

INVERSE $\quad: \sim P \rightarrow \sim Q$
If there is no flood then the crops will not be destroyed
03. Find $\frac{d y}{d x}$ if $y=\tan ^{-1}\left(\frac{5 x}{1-6 x^{2}}\right)$

SOLUTION

$$
\begin{aligned}
& y=\tan ^{-1}\left(\frac{3 x+2 x}{1-3 x .2 x}\right) \\
& y=\tan ^{-1} 3 x+\tan ^{-1} 2 x \\
& \frac{d y}{d x}=\frac{1}{1+9 x^{2}} \cdot \frac{d(3 x)+\frac{1}{d x}}{1+4 x^{2}} \frac{d}{d x}(2 x(\\
& \frac{d y}{d x}=\frac{3}{1+9 x^{2}}+\frac{2}{1+4 x^{2}}
\end{aligned}
$$

1. Find the volume of a solid obtained by the complete revolution of the ellipse

$$
\frac{x^{2}}{25}+\frac{y^{2}}{36}=1 \quad \text { about } Y \text { - axis }
$$

SOLUTION

STEP 1

$\frac{x^{2}}{25}+\frac{y^{2}}{36}=$
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$a^{2}=25 ; a=5$
$b^{2}=36, b=6$

STEP 2 :
$\frac{x^{2}}{25}+\frac{y^{2}}{36}=1$

$$
\begin{aligned}
& \frac{x^{2}}{25}=1-\frac{y^{2}}{36} \\
& \frac{x^{2}}{25}=\frac{36-y^{2}}{36} \\
& x^{2}=\frac{25\left(36-y^{2}\right)}{36}
\end{aligned}
$$

STEP 3 :

$$
\begin{aligned}
V & =\pi \int_{-6}^{6} x^{2} \cdot d y \int_{-6}^{\frac{25}{36}\left(36-y^{2}\right) \cdot d y} \\
& =\pi \int_{-6}^{6} \\
& =\frac{25 \pi}{36}\left(36-y^{2}\right) \cdot d y
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{25 \pi}{36}\left(36 y \frac{-y^{3}}{3}\right)_{-6}^{3} \\
& =\frac{25 \pi}{36}\left\{\left(216-\frac{216}{3}\right)-\left(-216+\frac{216}{3}\right)\right\} \\
& =\frac{25 \pi}{36}\{(216-72)-(-216+72)\} \\
& =\frac{25 \pi}{36}\{144+144) \\
& =\frac{25 \pi}{36}(288) \\
& =200 \pi \text { cubic units }
\end{aligned}
$$

2. Evaluate: $\int \log \left(1+x^{2}\right) d x$

$$
=\int \log \left(1+x^{2}\right) \cdot 1 d x
$$

$$
=\quad \log \left(1+x^{2}\right) \int 1 d x-\int\left(\frac{d}{d x} \log \left(1+x^{2}\right) \int 1 d x\right) d x
$$

$$
=\log \left(1+x^{2}\right) \cdot x-\int \frac{2 x}{1+x^{2}} \cdot x d x
$$

$$
=\quad x \cdot \log \left(1+x^{2}\right)-2 \int \frac{x^{2}}{1+x^{2}} d x
$$

$$
=x \cdot \log \left(1+x^{2}\right)-2 \int \frac{1+x^{2}-1}{1+x^{2}} \cdot d x
$$

$$
=x \cdot \log \left(1+x^{2}\right)-2 \int 1-\frac{1}{1+x^{2}} d x
$$

$$
=x \cdot \log \left(1+x^{2}\right)-2\left(x-\tan ^{-1} x\right)+c
$$

$$
=\quad x \cdot \log \left(1+x^{2}\right)-2 x+2 \tan ^{-1} x+c
$$

3. Find how many lanterns (x) should be ordered so that the order is the most economical if the price for lantern is given as

$$
p=4 x+\frac{64}{x^{2}}+\frac{7}{x}
$$

SOLUTION

STEP 1 : COST

$C=p \cdot x$

$$
\begin{aligned}
& =\left(4 x+\frac{64}{x^{2}}+\frac{7}{x}\right) \cdot x \\
& =4 x^{2}+\frac{64}{x}+7
\end{aligned}
$$

STEP 2 :

$$
\begin{aligned}
\frac{d C}{d x} & =8 x-\frac{64}{x^{2}}=8 x-64 x^{-2} \\
\frac{d^{2} C}{d x^{2}} & =8+128 x^{-3} \\
& =8+\frac{128}{x^{3}}
\end{aligned}
$$

STEP 3 :

$$
\begin{aligned}
& \frac{d C}{d x}=0 \\
& 8 x-\frac{64}{x^{2}}=0 \\
& 8 x=\frac{64}{x^{2}} \\
& 8 x^{3}=64 \\
& x^{3}=8 \quad \therefore x=2
\end{aligned}
$$

STEP 4:

$$
\left.\frac{d^{2} c}{d x^{2}}\right|_{x=2}=8+\frac{128}{2^{3}}>0
$$

Cost is minimum at $x=2$

No of lanterns to be ordered $=2$

Q3. (A)Attempt any TWO of the following

1. Using ALGEBRA OF STATEMENTS, prove

$$
p \wedge((\sim p \vee q) \vee \sim q) \equiv p
$$

```
Solution
    \(p \wedge((\sim p \vee q) \vee \sim q)\)
\(\equiv \quad p \wedge(\sim p \vee(q \vee \sim q) \quad \ldots \ldots \ldots . \quad\) Associative Law
    \(\equiv \quad \mathrm{p} \wedge(\sim \mathrm{p} \vee \mathrm{t}) \quad \ldots . . . . \quad\) Complement Law
    \(\equiv \quad \mathrm{P} \wedge \mathrm{t}\)
    ......... Identity Law
    \(\equiv \quad \mathrm{P}\)
    ......... Identity Law
```

2. $f(x)=\frac{\left(e^{3 x}-1\right)^{2}}{x \cdot \log (1+3 x)} \quad ; \quad x \neq 0$

$$
=10 \quad ; \quad x=0 \quad \text { Discuss the continuity at } x=0
$$

Solution :

Step 1

$$
\begin{aligned}
& \operatorname{Lim}_{x \rightarrow 0} f(x) \\
& =\operatorname{Lim}_{x \rightarrow 0} \frac{\left(e^{3 x}-1\right)^{2}}{x \cdot \log (1+3 x)}
\end{aligned}
$$

Dividing Numerator \& Denominator by x^{2}
$x \rightarrow 0, x \neq 0, x^{2} \neq 0$

$$
=\operatorname{Lim}_{x \rightarrow 0} \frac{\frac{\left(e^{3 x}-1\right)^{2}}{x^{2}}}{\frac{x \cdot \log (1+3 x)}{x^{2}}}
$$

$$
=\lim _{x \rightarrow 0} \frac{\left(\frac{e^{3 x}-1}{x}\right)^{2}}{\frac{\log (1+3 x)}{x}}
$$

$$
=\operatorname{Lim}_{x \rightarrow 0} \frac{\left(3 \frac{e^{3 x}-1}{3 x}\right)^{2}}{\log (1+3 x)^{\frac{1}{x}}}
$$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} \frac{\left(3 \frac{e^{3 x}-1}{3 x}\right)^{2}}{\log \left((1+3 x)^{3 x}\right)^{3}} \\
& =\frac{1}{\frac{(3 . \log e)^{2}}{\log e^{3}}} \\
& = \\
& \frac{9}{3 . \log e}
\end{aligned}
$$

Step 2 :
$f(0)=10$ \qquad given

Step 3 :
$f(0) \neq \operatorname{Lim}_{x \rightarrow 0} f(x)$
$\therefore f$ is discontinuous at $x=0$

Step 4 :

Removable Discontinuity
f can be made continuous at $x=0$ by redefining it as

$$
\begin{aligned}
f(x) & =\frac{\left(e^{3 x}-1\right)^{2}}{x \cdot \log (1+3 x)} ; x \neq 0 \\
& =3 ;
\end{aligned}
$$

3. if $\sin y=x \cdot \sin (5+y)$; prove that $\frac{d y}{d x}=\frac{\sin ^{2}(5+y)}{\sin a}$

SOLUTION

$$
\begin{aligned}
& \sin y=x \cdot \sin (5+y) \\
& x=\frac{\sin y}{\sin (5+y)}
\end{aligned}
$$

Differentiating wrt y

$$
\frac{d x}{d y}=\frac{\sin (5+y) \frac{d}{d y} \sin y-\sin y \frac{d}{d y} \sin (5+y)}{\sin ^{2}(5+y)}
$$

$$
\frac{d x}{d y}=\frac{\sin (5+y) \cdot \cos y-\sin y \cdot \cos (5+y) \frac{d}{d y}(5+y)}{\sin ^{2}(5+y)}
$$

$$
\frac{d x}{d y}=\frac{\sin (5+y) \cdot \cos y-\cos (5+y) \cdot \sin y}{\sin ^{2}(5+y)}
$$

$$
\frac{d x}{d y}=\frac{\sin (5+y-y)}{\sin ^{2}(5+y)}
$$

$$
\frac{d x}{d y}=\frac{\sin 5}{\sin ^{2}(5+y)}
$$

$$
\begin{aligned}
& \text { Now } \quad \frac{d y}{d x}=\frac{\frac{1}{\frac{d x}{d y}}}{\therefore \quad} \begin{array}{l}
\frac{d y}{d x}=\frac{\sin ^{2}(5+y)}{\sin 5}
\end{array},=\frac{d r}{d x}
\end{aligned}
$$

1. $\int_{4}^{7} \frac{(11-x)^{2}}{x^{2}+(11-x)^{2}} d x$
..... (1)

$$
\begin{aligned}
& \operatorname{USING} \int_{a}^{b} f(x) d x=\int_{b}^{b} f(a+b-x) d x \\
& 1=\int_{4}^{7} \frac{(11-(4+7-x))^{2}}{(4+7-x)^{2}+(11-(4+7-x))^{2}} d x \\
& 1=\int_{4}^{7} \frac{(11-(11-x))^{2} d x}{(11-x)^{2}+(11-(11-x))^{2}} \\
& I=\int_{4}^{7} \frac{(11-11+x)^{2} d x}{(11-x)^{2}+(11-11+x)^{2}} \\
& I=\int_{4}^{7} \frac{x^{2}}{(11-x)^{2}+x^{2}} d x \\
& \text { (1) }+(2) \\
& 2 I=\int_{4}^{7} \frac{(11-x)^{2}+x^{2}}{(11-x)^{2}+x^{2}} d x \\
& 2 I=\int_{4}^{7} 1 d x \\
& 2 I=(x)_{4}^{7} \\
& 2 I=7-4 \\
& 2 \mathrm{I}=3 \\
& \mathrm{I}=3 / 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 02. } \int \frac{x^{2}}{x^{4}+5 x^{2}+6} d x \\
& \int \frac{x^{2}}{\left(x^{2}+2\right)\left(x^{2}+3\right)} d x
\end{aligned}
$$

SOLUTION

$$
\begin{aligned}
& \frac{x^{2}}{\left(x^{2}+2\right)\left(x^{2}+3\right)}=\frac{A}{x^{2}+2}+\frac{B}{x^{2}+3} \\
& x^{2}=\dagger(\text { say })
\end{aligned}
$$

$$
\frac{t}{(t+2)(t+3)}=\frac{A}{t+2}+\frac{B}{t+3}
$$

$$
t \quad=A(t+3)+B(t+2)
$$

$$
\text { Put } \quad t=-3
$$

$$
\begin{array}{lll}
-3 & = & B(-3+2) \\
-3 & = & B(-1)
\end{array}
$$

$$
\therefore B=3
$$

Put $\quad t=\mathbf{- 2}$

$$
\begin{aligned}
-2 & =A(-2+3) \\
-2 & =A(1)
\end{aligned}
$$

$$
\therefore \quad A=-2
$$

THEREFORE

$$
\frac{t}{(t+2)(t+3)}=\frac{-2}{t+2}+\frac{3}{t+3}
$$

HENCE

$$
\frac{x^{2}}{\left(x^{2}+2\right)\left(x^{2}+3\right)}=\frac{-2}{x^{2}+2}+\frac{3}{x^{2}+3}
$$

BACK IN THE SUM
$=\int \frac{-2}{x^{2}+2}+\frac{3}{x^{2}+3} d x$
$=\int \frac{-2}{x^{2}+\sqrt{ } 2^{2}}+\frac{3}{x^{2}+\sqrt{ } 3^{2}} d x$
$=\quad-2 \cdot \frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+3 \frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+c$
$=-\sqrt{2} \tan ^{-1}\left(\frac{x}{\sqrt{2}}\right)+\sqrt{3} \tan ^{-1}\left(\frac{x}{\sqrt{3}}\right)+c$
03. $A=\left(\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right)$

Verify: $A \cdot(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=|A| . \mid$

COFACTOR'S
$A_{11}=(-1)^{1+1}\left|\begin{array}{cc}0 & -2 \\ 0 & 3\end{array}\right|=1(0-0)=0$
$A_{12}=(-1)^{1+2}\left|\begin{array}{cc}3 & -2 \\ 1 & 3\end{array}\right|=-1(9+2)=-11$
$A_{13}=(-1)^{1+3}\left|\begin{array}{ll}3 & 0 \\ 1 & 0\end{array}\right|=1(0-0)=0$

A21 $=(-1)^{2+1}\left|\begin{array}{cc}-1 & 2 \\ 0 & 3\end{array}\right|=-1(-3-0)=3$

A22 $=(-1)^{2+2}\left|\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right|=1(3-2)=1$
$\mathrm{A}_{23}=(-1)^{2+3}\left|\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right|=-1(0+1)=-1$

A31 $=(-1)^{3+1}\left|\begin{array}{rr}-1 & 2 \\ 0 & -2\end{array}\right|=1(2-0)=2$
$\mathrm{A}_{32}=(-1)^{3+2}\left|\begin{array}{rr}1 & 2 \\ 3 & -2\end{array}\right|=-1(-2-6)=8$

A33 $=(-1)^{3+3}\left|\begin{array}{cc}1 & -1 \\ 3 & 0\end{array}\right|=1(0+3)=3$

COFACTOR MATRIX OF A

$$
\left(\begin{array}{rcr}
0 & -11 & 0 \\
3 & 1 & -1 \\
2 & 8 & 3
\end{array}\right)
$$

ADJ A $=$ TRANSPOSE OF THE COFACTOR MATRIX

$$
=\left(\begin{array}{rrr}
0 & 3 & 2 \\
-11 & 1 & 8 \\
0 & -1 & 3
\end{array}\right)
$$

|A |

$$
\begin{aligned}
& =\quad 1(0+0)+1(9+2)+2(0-0) \\
& =\quad 11
\end{aligned}
$$

LHS 1
$=\quad$ A. $(\operatorname{adj} \mathrm{A})$
$=\left(\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right) \quad\left(\begin{array}{rrr}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right)$
$=\left(\begin{array}{lll}0+11+0 & 3-1-2 & 2-8+6 \\ 0-0-0 & 9+0+2 & 6+0-6 \\ 0-0+0 & 3+0-3 & 2+0+9\end{array}\right)$
$=\left(\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right)$

LHS 2
$=\quad(\operatorname{adj} A) \cdot A$
$=\left(\begin{array}{rrrr}0 & 3 & 2 & \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right)\left(\begin{array}{rrr}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right)$
$=\left(\begin{array}{ccc}0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0-0+0 & 0+2+9\end{array}\right)$
$=\left(\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right)$

RHS
$=\quad|A| . I$
$=11\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=\left(\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right)$

HENCE \quad A. $(\operatorname{adj} A)=(\operatorname{adj} A) . A=|A| . \mid$

SECTION - II

Q4. (A)Attempt any six of the following

1. Find correlation coefficient between x and y for the following data

$$
\begin{aligned}
& \mathrm{n}=100, \overline{\mathrm{x}}=62, \bar{y}=53, \sigma x=10, \sigma y=12, \Sigma(x-\bar{x})(y-\bar{y})=8000 \\
& \text { SOLUTION } \quad \mathrm{r}=\frac{\operatorname{cov}(x, y)}{\sigma x \cdot \sigma y} \\
&=\frac{\frac{\sum(x-\bar{x})(y-\bar{y})}{n}}{\sigma x \cdot \sigma y} \\
&=\frac{\frac{8000}{100}}{10.12} \\
&=\frac{80}{10.12} \\
&=\frac{2}{3}
\end{aligned}
$$

2. a car is insured for 80% of its value. An accident took place and the car was damaged to the extent of 40% of its value. How much can be claimed under the policy if the annual premium at 75 paise percent amounts to ₹ 360 . Also state the value of the car

SOLUTION

$$
\begin{aligned}
& \text { Value of car }=₹ x \\
& \text { Insured value }=\frac{80 x}{100}=\frac{4 x}{5} \\
&=0.75 \% \\
& \text { Rate of premium }=77 \text { paise percent } \\
&=₹ 360 \\
&=\frac{0.75}{100} \times \frac{4 x}{5} \\
&=\frac{75}{10000} \times \frac{4 x}{5} \\
& \text { Premium } \\
& 360=\frac{6 x}{1000} \\
& 360=60,000 \\
& 360=₹ 60,000
\end{aligned}
$$

$$
\begin{aligned}
\text { Loss } & =\frac{40}{100} \times 60,000 \\
& =₹ 24,000 \\
\text { Claim } & =80 \% \text { of loss } \\
& =\frac{80}{100} \times 24,000 \\
& =₹ 19,200
\end{aligned}
$$

3. The coefficient of rank correlation for a certain group of data is 0.5 . If $\sum d^{2}=42$ assuming no ranks are repeated; find the no. of pairs of observation

SOLUTION

$$
\begin{aligned}
& R=0.5 \quad ; \quad \Sigma d^{2}=42 \\
& R=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)} \\
& 0.5=1-\frac{6(42)}{n\left(n^{2}-1\right)} \\
& \frac{6(42)}{n\left(n^{2}-1\right)}=1-0.5 \\
& \frac{6(42)}{n\left(n^{2}-1\right)}=0.5 \\
& \frac{6(42)}{n\left(n^{2}-1\right)}=\frac{1}{2} \\
& n\left(n^{2}-1\right)=6 \times 42 \times 2 \\
& n\left(n^{2}-1\right)=3 \times 2 \times 3 \times 2 \times 7 \times 2 \\
& (n-1) \cdot n \cdot(n+1)=7 \times 8 \times 9 \\
& \text { On comparing, } \mathrm{n}=8
\end{aligned}
$$

4. Ameena started a business by investing certain capital. After 3 months she admitted Yasmin as a partner who invested the same amount. Finding the need for more capital they invited Shabana into the partnership after 4 months with same capital as they had. At the end of the year profit was $₹ 23,400$. How much was the share of each in the profit.

SOLUTION

STEP 1:

Profits will be shared in the ratio of
'PERIOD OF INVESTMENT'

$$
=\begin{array}{ccccc}
\text { AMEENA } & & \text { YASMIN } & \text { SHABANA } \\
\hline 12: & 9 & : & 5 \\
& & & \text { TOTAL }=26
\end{array}
$$

STEP 2

PROFIT = ₹ 23,400

900
Ameena's share of profit $=\frac{12}{\frac{26}{26}} \times 23,400=₹ 10,800$

900
Yasmin's share of profit $=\frac{9}{-26} \times 23,400=₹ 8,100$

900
Shabana's share of profit $=\frac{5}{\frac{26}{26}} \times 23,400=₹ 4,500$
05. Calculate CDR for district A and B and compare

COMMENT: CDR(B) < CDR(A). HENCE DISTRICT B IS HEALTHIER THAN DISTRICT A
06. the probability of defective bolts in a workshop is 40%. Find the mean and variance of defective bolts out os 10 bolts

SOLUTION

$$
\begin{aligned}
& n=10 \text {, } \\
& r, v, x=\text { no of defective bolts } \\
& \mathrm{p}=\text { probability of defective bolt }=40=2 \\
& 1005 \\
& q=1-p=3 \\
& X \sim B(10,2 / 5) \\
& \text { Mean }=n p=10 \times 2=5 \\
& \text { Variance }=n p q=10 \times \begin{array}{r}
2 \\
5
\end{array} \begin{array}{r}
3 \\
5
\end{array}
\end{aligned}
$$

7. The ratio of prices of two cycles was 16:23. Two years later when the price of first cycle has increased by 10% and that of second by ₹ 477 ; the ratio of prices becomes $11: 20$. Find the original prices of two cycles
solution

$$
\begin{aligned}
& \text { Let price of cycle } 1=16 x \\
& \text { Price of cycle } 2=23 x \\
& \text { As per the given condition } \\
& \begin{array}{l}
16 x+\frac{10}{100}(16 x) \\
23 x+477
\end{array} \begin{array}{l}
11 \\
20
\end{array} \\
& 16 x+8 x=\frac{11}{20}(23 x+477) \\
& \frac{88 x}{5}=\frac{11}{20}(23 x+477) \\
& 32 x=23 x+477 \\
& 9 x=477 \quad x=53 \\
& \text { price of cycle } 1=16(53)=\text { ₹ } 848 \\
& \text { price of cycle } 2=23(53)=₹ 1219
\end{aligned}
$$

8. for an immediate annuity paid for 3 years with interest compounded at 10% p.a. its present value is $₹ 10,000$. What is the accumulated value after 3 years $\left(1.1^{3}=1.331\right)$

$$
\begin{aligned}
\text { SOLUTION } & A=P(1+i)^{n} \\
& =10000(1+0.1)^{3} \\
& =10000(1.1)^{3} \\
& =10000(1.331) \\
& =₹ 13,310
\end{aligned}
$$

1. The probability that a student from an evening college will be a graduate is 0.4 . Determine the probability that out of 5 students
(i) one will be graduate
(ii) at least one will be graduate

solution

```
5 students,n=5
For a trial success - student is a graduate
p - probability of success \(=4 / 10=2 / 5\)
q - probability of failure \(=3 / 5\)
```

r.v. X - no of successes = 0, 1, $2, \ldots ., 5$
a) P (one will be graduate)

$$
\begin{aligned}
& =P(X=1) \\
& =P(1) \\
& ={ }^{5} C 1 \cdot p^{1} \cdot q^{4} \\
& ={ }^{5} C 1\left[\frac{2}{5}\right]^{1}\left(\frac{3}{5}\right)^{4} \\
& =5 \cdot 2 \cdot 81 \\
& =3125 \\
& =162 \\
& 625
\end{aligned}
$$

b) P (at least one will be graduate)

$$
\begin{aligned}
& =P(X \geq 1) \\
& =1-P(0) \\
& =1-5^{5} C 0\left(\frac{2}{5}\right]^{0}\left(\frac{3}{5}\right)^{5} \\
& =1-\frac{1.1 .243}{3125} \\
& =\frac{3125-243}{3125} \\
& =2882 \\
& 3125
\end{aligned}
$$

2. Compute rank correlation coefficient for the following data

Rx:	1	2	3	4	5	6
Ry:	6	3	2	1	4	5

SOLUTION

x	y	$d=\|x-y\|$	d^{2}
1	6	5	25
2	3	1	1
3	2	1	1
4	1	3	9
5	4	1	1
6	5	1	$\sum d^{2}=38$

$$
\begin{aligned}
R & =1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)} \\
& =1-\frac{6(38)}{6(36-1)} \\
& =1-\frac{38}{35} \\
& =-\frac{3}{35} \\
& =-0.086
\end{aligned}
$$

3. the income of the agent remains unchanged though the rate of commission is increased from 6% to 7.5%. Find the percentage reduction in the value of the business

SOLUTION

Let initial sales	$=₹ 100$
Rate of commission	$=6 \%$
\therefore Commission	$=\square 6$
Let the new sales	$=₹ x$
Rate of commission	$=7.5 \%$
\therefore Commission	$=\frac{7.5 x}{100}$

Since the income of the broker remains unchanged

$$
\begin{aligned}
& \frac{7.5 x}{100}=6 \\
& x=\frac{6 \times 1000}{75} \\
& x=80 \\
& \therefore \text { new sales }=₹ 80
\end{aligned}
$$

Hence percentage reduction in the value of the business $=20 \%$

1. the value of godown of $₹ 40,000$ contains stock worth $₹ 2,40,000$. They were insured for $₹ 25,000$ and 80% of the stock respectively. Due to fire, stock worth $₹ 30,000$ was completely destroyed while remaining was reduced to 60% of its value. The damage to the godown was ₹ 20,000 . What sum can be claimed under the policy

solution

GODOWN

$$
\begin{aligned}
\text { Property value } & =₹ 40,000 \\
\text { Insured value } & =₹ 25,000 \\
\frac{\text { Loss }}{\text { Claim }} & =₹ 20,000 \\
& =\frac{\text { insured val. }}{\text { Property val. }} \\
& =\frac{25,000}{40,000} \times 20,000 \\
& =₹ 12,500
\end{aligned}
$$

STOCK IN GODOWN

Value of stock $=₹ 2,40,000$

Insured value $=80 \%$ of the stock
Loss
stock worth ₹ 30,000 was completely destroyed while remaining was reduced to 60% of its value
$=30,000+\frac{40}{100}(2,40,000-30,000)$
$=30,000+\frac{40}{100}(2,10,000)$
$=30,000+84,000$
$=₹ 1,14,000$

Since 80% of the stock was insured

Claim
$=80 \%$ of loss
$=\frac{80}{100} \times 1,14,000$
$=₹ 91,200$

Hence
Total claim
$=12,500+91,200=₹ 1,03,700$
02.

X	$:$	6	2	10	4	8
Y	$:$	9	11	$?$	8	7

Arithmetic means of X and Y series are 6 and 8 respectively. Calculate correlation coefficient SOLUTION :

$$
\bar{y}=\frac{\Sigma y}{n} \quad 8=\frac{9+11+b+8+7}{5}
$$

$40=35+b \quad b=5$

x	y	$x-\bar{x}$	$y-\bar{y}$	$(x-\bar{x})^{2}$	$(y-\bar{y})^{2}$	$(x-\bar{x})(y-\bar{y})$
6	9	0	1	0	1	0
2	11	-4	3	16	9	-12
10	5	4	-3	16	9	-12
4	8	-2	0	4	0	0
8	7	2	-1	4	1	-2
30	40	0	0	40	20	-26
Σx	Σy	$\Sigma(x-\bar{x})$	$\Sigma(y-\bar{y})$	$\Sigma(x-\bar{x})^{2}$	$\Sigma(y-\bar{y})^{2}$	$\Sigma(x-\bar{x})(y-\bar{y})$
$\bar{x}=6 \bar{y}=8$						

$$
r=\frac{\Sigma(x-\bar{x}) \cdot(y-\bar{y})}{\sqrt{\Sigma(x-\bar{x})^{2}} \sqrt{\Sigma(y-\bar{y})^{2}}}
$$

$$
r=\frac{-26}{\sqrt{40 \times \sqrt{ } 20}}
$$

$$
r=\frac{-26}{\sqrt{40 \times 20}}
$$

$$
r^{\prime}=\frac{26}{\sqrt{40 \times 20}}
$$

taking log on both sides

$$
\begin{aligned}
\log r^{\prime} & =\log 26-\frac{1}{2}[\log 40+\log 20] \\
\log r^{\prime} & =1.4150-\frac{1}{2}[1.6021+1.3010] \\
\log r^{\prime} & =1.4150-\frac{1}{2}(2.9031) \\
\log r^{\prime} & =1.4150-1.4516 \\
\log r^{\prime} & =\overline{1} .9634 \\
r^{\prime} & =A L(1.9634)=0.9191 \\
r & =-0.9191
\end{aligned}
$$

3. A bill of 21,900 drawn on July 10 for 6 months was discounted for $₹ 21,720$ at 5% p.a. On which day the bill was discounted

SOLUTION

STEP 2

Let Unexpired period = d days

STEP 3 :
B.D. = F.V. - C.V.

$$
\begin{aligned}
& =21,900-21,720 \\
& =₹ 180
\end{aligned}
$$

STEP 4 :
B.D. = Interest on F.V.for 'd' days @ 5% p.a.

3
180

$$
=21900 \times \mathrm{d} \times \underset{-}{ }
$$

$d=60$

STEP 5:

Dt. of Discount

$$
\begin{aligned}
= & 13^{\text {th }} \text { Jan }-60 \text { days } \\
& \text { Jan } \quad \text { Dec Nov } \\
= & 13+31+16 \\
= & 14^{\text {th }} \text { November }
\end{aligned}
$$

01.100 misprints are distributed randomly throughout the 100 pages of a book. Assuming the distribution of the number of misprints to be Poisson, find the probability that a page at random will contain at least three misprints ($e^{-1}=0.368$)

SOLUTION

$m=$ average number of misprints perpage $=100 / 100=1$
r.v $X \sim P(1)$

P(a page at random will contain at least three misprints)
$=P(x \geq 3)$
$=P(3)+P(4)+\ldots \ldots$.
$=1-(P(0)+P(1)+P(2))$
$=1-\left(\frac{e^{-1} \cdot 1^{0}}{0!}+\frac{e^{-1} \cdot 1^{1}}{1!}+\frac{e^{-1} \cdot 1^{2}}{2!}\right)$ Using $P(x)=\frac{e^{-m} \cdot m^{x}}{x!}$
$=1-e^{-1} \cdot\left(\frac{1}{1}+\frac{1}{1}+\frac{1}{2}\right)$
$=1-0.368(1+1+0.5)$
$=1-0.368(2.5)$
$=1-0.92$
$=0.08$
02. Suppose X is a random variable with pdf

$$
f(x)=\frac{c}{x} ; 1<x<3 ; c>0
$$

Find c \& $E(X)$
i) 3

$$
\int_{1} \frac{c}{x} d x=1
$$

$$
c \int_{1}^{3} \frac{1}{x} d x=1
$$

$$
c(\log x)_{1}^{3}=1
$$

$$
c(\log 3-\log 1)=1
$$

$$
c \log 3=1
$$

$$
c \quad=\frac{1}{\log 3}
$$

Hence X is a rev. with pdf

$$
f(x)=\frac{1}{x \cdot \log 3} ; 1<x<3
$$

ii) $E(x)=\int_{1}^{3} x \cdot f(x) d x$

$$
=\int_{1}^{3} x \cdot \frac{1}{x \cdot \log 3} d x
$$

$$
=\int_{1}^{3} \frac{1}{\log 3} d x
$$

$$
=\left(\frac{x}{\log 3}\right)^{3}
$$

$$
=\left(\frac{3}{\log 3}\right)-\left(\frac{1}{\log 3}\right)=\frac{2}{\log 3}
$$

3. In a factory there are six jobs to be performed, each of which should go through machines A and B in the order $A-B$. Determine the sequence for performing the jobs that would minimize the total elapsed time T. Find T and the idle time on the two machines

Job	J1	J2	J3	J4	J5	J6
M_{A}	1	3	8	5	6	3
M_{B}	5	6	3	2	2	10

Step 1 : Finding the optimal sequence

Min time $=1$ on job J_{1} on machine M1. Place the job at the start of the sequence

J_{1}					

Next min time $=2$ on jobs $J_{4} \& J_{5}$ on machine M_{B}. Place the jobs at the end of the sequence randomly

Placed Randomly

Next min time $=3$ on jobs $J_{2} \& J_{6}$ on machine M_{A} and on job J_{3} on machine M_{B} respectively. Place $\mathrm{J}_{2} \& \mathrm{~J}_{6}$ at the start next to J_{1} randomly and J_{3} at the end next to J4

OPTIMAL SEQUENCE

J1	J2	J6	J3	J4	J5

Step 2 : Work table

According to the optimal sequence

Job	$\mathbf{J}_{\mathbf{1}}$	$\mathbf{J}_{\mathbf{2}}$	$\mathbf{J 6}_{6}$	$\mathbf{J}_{\mathbf{3}}$	$\mathbf{J 4}_{\mathbf{4}}$	$\mathbf{J}_{\mathbf{5}}$	total process time	
M_{A}	1	3	3	8	5	6	$=$	26 hrs
M_{B}	5	6	10	3	2	2	$=$	28 hrs

	MACHINES			
	MA		Mb	
JOBS	IN	OUT	IN	OUT
$J 1$	0	1	1	6
J_{2}	1	4	6	12
J6	4	7	12	22
J3	7	15	22	25
J_{4}	15	20	25	27
J5	20	26	27	29

Idle time on Mb

Step 3 :
Total elapsed time $\mathbf{T}=29 \mathrm{hrs}$

Idle time on $M_{A}=T-($ sum of processing time of all 6 jobs on $M 1)$
$=29-26$
$=3 \mathrm{hrs}$

Idle time on $M_{B}=T-\left(\right.$ sum of processing time of all 6 jobs on M_{2})
= 29-28
$=1 \mathrm{hr}$

Step 4 : All possible optimal sequences :

$$
\begin{gathered}
\mathrm{J}_{1}-\mathrm{J}_{2}-\mathrm{J}_{6}-\mathrm{J}_{3}-\mathrm{J}_{4}-\mathrm{J}_{5} \\
O R \\
\mathrm{~J}_{1}-\mathrm{J}_{6}-\mathrm{J}_{2}-\mathrm{J}_{3}-\mathrm{J}_{4}-\mathrm{J}_{5} \\
O R \\
\mathrm{~J}_{1}-\mathrm{J}_{2}-\mathrm{J}_{6}-\mathrm{J}_{3}-\mathrm{J}_{5}-\mathrm{J}_{4} \\
O R
\end{gathered}
$$

$$
\mathrm{J}_{1}-\mathrm{J}_{6}-\mathrm{J}_{2}-\mathrm{J}_{3}-\mathrm{J}_{5}-\mathrm{J}_{4}
$$

1. a pharmaceutical company has four branches, one at each city A, B, C and D. A branch manager is to be appointed one at each city, out of four candidates P, Q, R and S. The monthly business depends upon the city and effectiveness of the branch manager in that city

		CITY				
		A	B	C	D	
	P	11	11	9	9	
branch	Q	13	16	11	10	monthly business (in lacs)
manager	R	12	17	13	8	
	S	16	14	16	12	

Which manager should be appointed at which city so as to get maximum total monthly business.

6	6	8	8	Subtracting all the elements in the matrix from
4	1	6	7	its maximum
5	0	4	9	The matrix can now be solved for 'MINIMUM'
1	3	1	5	
0	0	2	2	Reducing the matrix using 'ROW MINIMUM'
3	0	5	6	
5	0	4	9	
0	2	0	4	
0	0	2	0	Reducing the matrix using 'COLUMN MINIMUM'
3	0	5	4	
5	0	4	7	
0	2	0	2	
0	*	2	*	- Allocation using 'single zero row-column method'
3	0	5	4	- Allocation incomplete (3rd row unassigned)
5	*	4	7	
*	2	0	2	

- Drawing min. no. of lines to cover all '0's

0	3	2	0	Revise the matrix
0	0	2	1	Reducing all the uncovered elements by its
2	0	1	4	minimum and adding the same at the
0	4	0	2	intersection
\star	3	2	0	- Reallocation using 'single zero row-column method'
0	*	2	1	- Since all rows contain an 'assigned zero', the
2	0	1	4	assignment problem is complete
*	4	0	2	
Optimal Assignment			$P-D ; \quad Q-A ; \quad R-B ; \quad S-C$	
			Maximum business $=9+13+17+16=55($ lacs $)$	

2. the management of a large furniture store would like to determine if there is any relationship between the number of people entering the store on a given day (X) and sales (in thousands of ■) (Y). The records of ten days is given
$\Sigma x=580 ; \quad \Sigma y=370 ; \quad \Sigma x^{2}=41658 ; \quad \Sigma y^{2}=17206 ; \quad \Sigma x y=11494$
Obtain regression line X on Y
SOLUTION

$$
\begin{aligned}
\bar{x}=\frac{\Sigma x}{n} & =\frac{580}{10}=58 ; \bar{y}=\frac{\Sigma y}{10}=\frac{370}{10}=37 \\
b x y & =\frac{n \Sigma x y-\Sigma x . \Sigma y}{n \Sigma y^{2}-(\Sigma y)^{2}} \\
& =\frac{10(11494)-(580)(370)}{10(17206)-(370)^{2}} \\
& =\frac{114940-214600}{172060-136900} \\
& =-\frac{99660}{35160} \\
& =-\frac{9966}{3516} \\
& \quad \begin{array}{|c}
\text { LOG CALC } \\
3.9986 \\
-2.835
\end{array}
\end{aligned}
$$

Equation

$$
\begin{aligned}
& x-\bar{x}=b x y(y-\bar{y}) \\
& x-58=-2.835(y-37) \\
& x-58=-2.835 y+104.895 \\
& x=-2.835 y+104.895+58 \\
& x=-2.835 y+162.895
\end{aligned}
$$

